Elements of ICME Research Workshop Molecular Dynamics with LAMMPS

- Elements of ICME Research Workshop UIUC July 23-25, 2014 Uni
 - Andrew L. Ferguson Materials Science and Engineering University of Illinois at Urbana-Champaign

I. Introduction

Time Scale

What is molecular dynamics?

A computational microscope

An experiment on a computer

A simulation of the classical mechanics of atoms

Why is it useful?

By simulating atomic and molecular motions, we can gain **atomistic insight** into molecular structure and kinetics

Powerful experimental techniques (X-ray diffraction, NMR) can resolve atomic structure, but not dynamics

We can **predict and understand** molecular behavior and compare / interpret experimental observations

Total control of molecular forces, structure, and conditions

In principle, it can furnish **all** classical thermodynamics about **any** molecular system*

* subject to available force fields and sufficient computational power!

What is it used for?

Materials property prediction

- bulk modulus, surface tension, shear viscosity, thermal conductivity, flow, gelation

Biomolecular modeling
protein folding, viral capsids,
cell membranes, ion transport

Ligand and drug design - docking, interaction, sterics

High-throughput molecular screening - drugs, surfactants, self-assembling materials

Is it used in industry?

YES!

Computer power (just) continues to follow Moore's Law, computation gets cheaper every year

Reliable and validated computational exploration and testing is **much** cheaper and quicker than an R&D lab!

MD is now a standard tool in pharma, nuclear, chemical, oil, aerospace, electronics, and plastics

MD is maturing into an "off-the-shelf" tool similar to the emergence of CFD in the 90's

Academic publishing trends

Scopus abstract/title/keyword search "molecular dynamics"

II. History

First MD simulation

Alder & Wainwright (1957) invent molecular dynamics and perform first simulations of the hard sphere fluid

solid phase

liquid phase

liquid-vapour-phase

Berni Alder receives Boltzmann Medal (2001) and National Medal of Science (2009) for this work

Currently Professor Emeritus at UC Davis

Alder, B. J. and Wainwright, T. E. J. Chem. Phys. 27, 1208 (1957)

Milestones in MD

1960 Gibson et al.

Simulation of Cu radiation damage

Gibson, J.B., Goland, A.N., Milgram, M., and Vineyard, G.H. Phys. Rev. 120 1229 (1960)

1974 Rahman & Stillinger

First simulation of liquid water

Stillinger, F.H. and Rahman, A.J. Chem. Phys. 60 | 545 (1974)

1994 York et al.

BPTI hydrated xtal

Ins

York, D.M., Wlodawer, A., Pedersen, L.G. and Darden, T.A. PNAS 91 18 8715 (1994)

2010 Shaw et al.

BPTI in water

[ms]

Shaw, D.E. et al. Science 330 341 (2010)

1957 Alder & Wainwright

First MD simulation of hard sphere fluid

Alder, B.J. and Wainwright, T..E. J. Chem. Phys. 27 1208 (1957)

solid phase

liquid phase

liquid-vapour-phase

1964 Rahman

First simulation of liquid Ar using realistic potential Rahman, A. Phys. Rev. A136 405 (1964)

1977 McCammon et al.

First protein simulation Villin headpiece in (BPTI) [8.8ps]

McCammon, J.A., Gelin, B.R., and Karplus, M. Nature 267 585 (1977)

1998 Duan & Kollman

water [|µs]

Duan, Y., and Kollman, P.A. Science 282 5389 740 (1998)

III. Basic Principles

The fundamental idea

MD simulates atomic motions using classical mechanics

Running a simulation is like cooking - just follow the recipe!

Three ingredients:

I. An initial system configuration [*r*Interaction potentials for system *V*A way to integrate F=ma

 $\left[\vec{r}(t=0), \vec{v}(t=0)\right]$ $V(\vec{r})$

The fundamental idea

Laplace's Demon / "The Clockwork Universe"

"Given for one instant an intelligence which could <u>comprehend all</u> <u>the forces by which nature is animated</u> and the <u>respective</u> <u>positions of the beings which compose it</u>, if moreover this intelligence were vast enough to <u>submit these data to analysis</u>, it would embrace in the same formula both the movements of the largest bodies in the universe and those of the lightest atom; to it nothing would be uncertain, and the future as the past would be present to its eyes."

- Pierre Simon de Laplace (1749-1827)

This is basically molecular dynamics!

But what about quantum effects?

 Classical MD treats atoms* as point particles that move deterministically via Newton's equations of motion

Is this a valid description of atomic dynamics? YES.

(1) Born-Oppenheimer allows us to treat electrons implicitly. Their effect is "baked in" to nuclear interaction potential.

 $\tau_{elec} \sim 10^{-18} s$ $\tau_{nuc} \sim 10^{-15} s$

Separation of time scales argues for pseudo-equilibrium of electrons with respect to nuclei

But what about quantum effects?

(2) The Schrödinger equation for nuclei replaced by F=ma

de Broglie wavelength: $\Lambda_H \sim I \text{ Å}, \Lambda_C \sim 0.3 \text{ Å}$ characteristic atomic separation: d ~I Å

For all but lightest atoms $d >> \Lambda$, allowing us to treat atoms as point particles and use classical mechanics*

*The quantum behavior of light elements (e.g., H, He, Ne) requires special treatment by fixing bond lengths or lumping light atoms into united atoms

Ingredient I: Initial configuration

- Specification of initial atomic coordinates and velocities
- Classical mechanics is deterministic: initial state and interaction rules fully specify the system's future*
- Wind up Laplace's clockwork universe and — in principle — a

Theoretical and Computational Biophysics Group Beckman Institute University of Illinois at Urbana-Champaign

- "vast intelligence" could compute the future of the system
- Our intelligence is insufficiently vast the equations are hard! and thus we resort to numerical simulation

Initializing coordinates

Initial configurations can be generated "by hand" or short scripts for simple systems (e.g., liquid Ar, bulk Al)

Software tools for complex systems (e.g., proteins, complex defect structures)

PRODRG (<u>http://davapcl.bioch.dundee.ac.uk/prodrg/</u>) ATP (<u>http://compbio.biosci.uq.edu.au/atb/</u>) PyMOI (<u>http://www.pymol.org/</u>) Chimera (<u>http://www.cgl.ucsf.edu/chimera/</u>)

 Common protein structures are in Protein Data Bank
PDB (www.rcsb.org/pdb)

Protein in) water				
2626					
1ACE	CH3	1	0.654	2.519	0.492 0.1151 -0.0284 0.0138
1ACE	HH31	2	0.740	2.540	0.554 0.2235 0.0824 -0.1715
1ACE	HH32	3	0.605	2.433	0.538 3.1239 -1.7508 0.2704
1ACE	HH33	4	0.684	2.482	0.394 0.2995 1.4351 -0.5063
1ACE	С	5	0.553	2.633	0.481 -0.0173 -0.1643 -0.2114
1ACE	0	6	0.445	2.613	0.535 -0.0062 -0.0674 -0.1518
2414	Ň	7	0.582	2.739	0.405 0.1733 0.1955 0.3558
2414	н	8	0.510	2 806	A 379 2 A591 1 7509 _1 1449
2414	 גר	ă	0.510 0 705	2 781	0 341 -0 1656 -0 5238 -0 7826
2414	НА	10	0.105 0.741	2 700	0.278 _1 5076 _1 1917 _0 7488
2414	CB	11	0.141 0.674	2.700	0.270 -1.3070 -1.1917 -0.1400
241.4	HB1	12	0.074 0.611	2.911	0.207 0.4073 -0.0071 -0.1470
246	LID1	12	0.011	2.070	0.179 -2.0104 -0.1102 1.0007
2464	UD2	10	0.020	2.7//	0.370 0.9553 -0.2005 0.3737
	nb3	14	0.703	2.997	0.225 0.9167 -0.2257 0.5469
	ι 	15	0.013	2.005	0.445 -0.7200 -0.5024 -0.1920
ZALA	0	16	0.783	2.866	0.547 0.1974 -0.4451 0.0528
SNAC	N	17	0.941	2.777	0.419 -0.5125 0.1136 0.1784
3NAC	H	18	1.000	2.799	0.497 0.1647 -1.3605 0.1187
3NAC	CH3	19	1.001	2.723	0.298 -0.7672 -0.2750 0.2229
3NAC	HH31	20	1.092	2.669	0.324 0.3722 1.1812 -0.5828
3NAC	HH32	21	0.945	2.648	0.243 1.0207 -0.0997 -1.9789
3NAC	HH33	22	1.030	2.810	0.238 -2.1192 -0.7269 -1.1621
4SOL	OW	23	0.784	1.392	0.792 0.1855 -0.2071 0.1377
4SOL	HW1	24	0.735	1.315	0.761 -1.0746 1.1108 -1.3153
4SOL	HW2	25	0.719	1.445	0.839 1.3389 -0.5885 2.3128
5S0L	OW	26	0.428	0.234	2.288 1.2957 -0.4548 -0.0720
5S0L	HW1	27	0.411	0.170	2.219 -0.2175 0.3118 -0.4516
5S0L	HW2	28	0.488	0.297	2.247 3.0259 -1.7375 0.3978
6S0L	OW	29	0.166	0.601	2.571 -0.1148 0.6829 -0.6515
6SOL	HW1	30	0.212	0.681	2.595 -0.5922 0.6213 0.5401
6S0L	HW2	31	0.228	0.552	2.517 1.4295 0.3667 1.2935
7S0L	OW	32	2.575	0.438	1.811 0.4391 0.2071 0.3094
7S0L	HW1	33	2.581	0.469	1.721 -1.3349 0.1731 0.1541
7S0L	HW2	34	2.481	0.429	1.828 0.6643 1.2137 2.4877
8S0L	OW	35	0.492	2.063	2.222 -0.4334 -0.0059 -0.1953
8S0L	HW1	36	0.570	2.035	2.269 -0.2720 -1.2784 -1.1564
8SOL	HW2	37	0.450	2.127	2.279 0.5359 -0.3976 0.9797
950L	OW	38	2.657	0.259	0.784 0.3737 -0.2806 0.0046
950L	HW1	39	2.659	0.233	0.692 -1.4133 0.9624 -0.4269
950L	HW2	40	2.714	0.335	0.789 1.6804 -1.2503 0.2641
10S0L	OW	41	-0.009	1.802	0.210 0.2163 0.8744 -0.2151
10S0L	HW1	42	-0.046	1.724	0.251 -0.3127 1.2546 0.0424
1050L	HW2	43	0.080	1.807	0.244 0.7693 -0.4235 -1.3548
1150	OW	44	0.693	2.694	2.223 -0.8870 -0.4375 0.1438
1150	HW1	45	0.641	2.585	2.302 -0.5618 -3.2331 -0.1923
1150	HW2	46	0.772	2.647	2.256 -0.6655 -1.7422 1.4208
1250	nω	47	2.699	2.648	2.637 0.3128 -0.3491 0.5421
12500	HW1	48	2.615	2.621	2.547 _0.1552 _1.3876 _0.7622
TEOOL					

18

Initializing velocities

Bad idea to start atoms from rest (absolute zero = 0 K) due to thermal shock upon starting simulation

Standard approach is to draw velocities randomly from a Maxwell-Boltzmann distribution at the temperature, T

$$f_{\mathbf{v}}(v_x, v_y, v_z) = \left(\frac{m}{2\pi kT}\right)^{3/2} \exp\left[-\frac{m(v_x^2 + v_y^2 + v_z^2)}{2kT}\right]$$

Ingredient 2: Interaction potentials

The net force acting on each atom in the system is a result of its interactions with all other atoms

These interaction amount to a set of rules known as a force field or interaction potential

Accurate, robust, and transferable force fields are critical to perform physically realistic molecular simulations

Force field development is an academic industry

metals:EAM (Daw & Baskes), MEAM (Baskes)biomolecules:Amber (Kollman, UCSF), GROMOS (U. Groningen), CHARMM (Karplus, Harvard),
OPLS (Jorgensen, Yale), MARTINI [coarse grained] (Marrink, U. Groningen)n-alkanes:TraPPE (Siepmann, U. Minnesota), MM2 (Allinger, UGA)water:SPC (Berendsen), SPC/E (Berendsen), TIPnP(Jorgensen), ST2 (Stillinger & Rahman)general:DREIDING (Mayo et al.), DISCOVER(Rappe et al.), UFF (Hagler et al.)

Energy, force, and acceleration

The potential energy of the system is a complicated function of atomic coordinates (this is why we have to simulate numerically rather than calculate analytically)

The net force on atom i is the negative gradient of the potential energy wrt the atomic coordinates

$$F_i = -\nabla_i [V(r_1, r_2, \dots, r_N)]$$
$$a_i = \frac{F_i}{m_i}$$

The potential energy is typically broken into four parts:

$$V(\vec{r}) = V_{bonded} + V_{non-bonded} + V_{restraints} + V_{field}$$

http://www.mbnexplorer.com/users_guide/users_guide743x.png

Non-bonded

Approximate full *n*-body interactions as pairwise additive for simplicity and computational efficiency (cf. (M)EAM)

van der Waals

Coulomb

 $V_{Coul}(r_{ij}) = \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$

Fields

Fields are commonly used to model:I. external potentials (e.g., electric, magnetic, flow)2. continuum solvation (no explicit solvent molecules)

EAM / MEAM

- Multi-body potential widely used for metallic solids
- EAM Embedded Atom Model
- MEAM Modified Embedded Atom Model
- Inherently many-body \Rightarrow slower than pairwise additive FF (2x EAM, 3-5x MEAM)

25

EAM / MEAM

Local e⁻ density functions

EAM

$$n_i = \sum_{j \neq i} \rho_j(r_{ij})$$

$$n_{i} = \sum_{j \neq i}^{N} \rho_{j}\left(r_{ij}\right) + \frac{1}{2} \sum_{j,k \neq i}^{N} f_{ij}\left(r_{ij}\right) f_{ik}\left(r_{ik}\right) g_{i}\left(\cos \theta_{jik}\right)$$

3-body radial

3-body angular

→ 3-body term in MEAM improves agreement for directional bonding (bcc, hcp, diamond)
NIST Interatomic Potentials Repository

Ele	Elements																	
	1																	18
1	1 H	2											13	14	15	16	17	2 He
2	3 Li	4 Be											5 B	6 C	7 N	8 0	9 F	10 Ne
3	11 Na	12 Mg	3	4	5	6	7	8	9	10	11	12	13 <u>Al</u>	14 <u>Si</u>	15 P	16 §	17 Cl	18 Ar
4	19 K	20 Ca	21 Sc	22 11	23 ¥	24 <u>Cr</u>	25 Mn	26 Fe	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 Zn	31 Ga	32 Ge	33 As	34 <u>Se</u>	35 Br	36 Kr
5	37 <u>Rb</u>	38 Sr	39 Y	40 Zr	41 Nb	42 <u>Mo</u>	43 Tc	44 <u>Ru</u>	45 Rh	46 Pd	47 Ag	48 <u>Cd</u>	49 In	50 Sn	51 Sb	52 <u>Te</u>	53 I	54 Xe
6	55 <u>Cs</u>	56 Ba	*	72 Hf	73 <u>Ta</u>	74 ₩	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		•	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		••	89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	
					_													

http://www.ctcms.nist.gov/potentials/

Alloys, Co	ompounds, and Mixtures				
Grouped by th	he number of elements or species, not th	e type of bonding.			
Binaries (two	elements)				
Al-Co	Ag-Cu	Al-Cu	AI-Fe	AI-H	AI-Mg
Al-Ni	AI-Pb	AI-Ti	C-Fe	C-H	Cu-Ag
Cu-Al	Co-Al	Co-Ni	Cr-Fe	Cr-Ni	Cu-Fe
Cu-Ni	Cu-Pb	Cu-Ta	Cu-Zr	Fe-Al	Fe-C
Fe-Cr	Fe-Cu	Fe-Ni	Fe-P	Fe-V	Mg-Al
Ni-Al	Ni-Co	Ni-Cr	Ni-Cu	Ni-Fe	Ni-Zr
P-Fe	Pb-Al	Pb-Cu	Pd-H	Ta-Cu	TI-AI
UO ₂	(U,Pu,Np)O2	V-Fe	Zr-Cu	Zr-Ni	
Ternaries (thr	ee elements)				
AgTaO ₃		Al-Mn-Pd			
C-H-O		Fe-Cu-Ni			
Fe-Ni-Cr		Ni-Al-Co			
Ni-Al-H		Pd-Ag-H			
U-Mo-Xe					
Higher order ((four or more elements)				
Al-Si-Mg-Cu-	Fe				
Zn-Cd-Hg-S-	Se-Te (II-VI semiconductor compounds)				

Ingredient 3: Integrators

[initial atomic coordinates and velocities] + [force field] ⇒ entire future (and past!) modeled by F=ma

Analytical solutions for the dynamical evolution cannot be computed for all but the simplest systems (>2 body)

Solve Newton's equations by numerical integration ⇒ computers ideally suited to rapid, repetitive calculations

Solving by hand would require thousands of years!

 $dt \cdot 6(t^2 \cdot t \cdot 1 \cdot \frac{h}{t \cdot h})$ 1. (n 11x1.1

Verlet algorithm

Many possible integration algorithms exist (e.g., explicit/implicit Euler, Gear predictor-corrector, nth order Runge-Kutta, Beeman, Newmark-beta)

The method of choice is the Verlet algorithm

- ✓ fast
- ✓ simple
- ✓ low-memory
- ✓ stable
- ✓ time-reversible
- symplectic (phase space volume & E conserving)
- × poor accuracy for large time steps (Δt must be small)

First recorded use by Delambre in 1791 Popularized in MD by Loup Verlet in 1967

Verlet algorithm

Derived from Taylor series:

$$r(t + \delta t) = r(t) + \dot{r}(t)\delta t + \frac{1}{2}\ddot{r}(t)\delta t^{2} + \dots$$
$$= r(t) + v(t)\delta t + \frac{1}{2}a(t)\delta t^{2} + \dots$$

$$r(t - \delta t) = r(t) - \dot{r}(t)\delta t + \frac{1}{2}\ddot{r}(t)\delta t^{2} + \dots$$
$$= r(t) - v(t)\delta t + \frac{1}{2}a(t)\delta t^{2} + \dots$$

$$r(t + \delta t) = 2r(t) - r(t - \delta t) + a(t)\delta t^{2} + \mathcal{O}\left(\delta t^{4}\right)$$
$$v(t) = \frac{r(t + \delta t) - r(t - \delta t)}{2\delta t} + \mathcal{O}\left(\delta t^{2}\right)$$

 $a_i = \frac{F_i}{m_i}$

Time-reversibility

Higher order integration algorithms have higher per step accuracy, enabling longer time steps and faster simulations (e.g., Runge-Kutta, Gear predictor-corrector)

But, do not respect time reversibility of Newton's equations causing energy drift and error accumulation

Simulation Overview

Simulation Overview

Simulation Overview

IV. Advanced Topics

Ensembles

- Naturally MD ensemble is microcanonical (NVE): **N** - fixed # atoms
 - V fixed volume
 - E fixed energy

What if we want to simulate in other thermodynamic ensembles that are closer to experimental systems?

Canonical (isothermal-isochoric) - NVT Isothermal-isobaric - NPT Isenthalpic-isobaric - NPH

MD is typically restricted to fixed N

Thermostats

The temperature of a classical system is defined by the average molecular velocity

$$E_{kin} = \frac{1}{2} \sum_{i=1}^{N} m_i v_i^2 \qquad \frac{1}{2} N_{df} kT = E_{kin}$$

All thermostats are based on rescaling molecular velocities:

V-rescaling

- simple uniform rescaling of $\{v_i\}$
 - does not yield canonical ensemble

Berendsen

Andersen

- weak first-order coupling of v_i to target T
- does not yield canonical ensemble

- periodic v_i replacement with M-B distⁿ

 correct coord canonical ensemble, **but** unsuitable for for studying dynamics due to v_i discontinuities

Nosé-Hoover -

- over weak coupling of vito target T via fictitious oscillators
 - correct coord & velocity canonical distⁿ and fluctuations*

* for N-H **chains**, single N-H thermostat non-ergodic in certain systems
Barostats

Pressure is computed from the virial equation

$$\mathbf{P} = \frac{2}{V} (\mathbf{E}_{kin} - \mathbf{\Xi}) \qquad \mathbf{\Xi} = -\frac{1}{2} \sum_{i < j} \mathbf{r}_{ij} \otimes \mathbf{F}_{ij}$$

Barostats control pressure by scaling the box volume:

Berendsen

- weak first-order coupling of V to target P
- does not yield isobaric ensemble

Parrinello-Rahman - weak coupling of V to target P via fictitious oscillators

- similar to Nosé-HooverT coupling scheme
- correct coord & velocity isobaric distⁿ and fluctuations

Periodic boundary conditions

Can only simulate small (nanoscopic) patch of space

"'Trick' the system into thinking it is infinite by tiling space with periodic replicas of fundamental simulation cell

Molecules exiting one wall re-enter through the opposite!

Minimum image convention

Under PBC, inter-particle distances are measured using the **minimum image convention**

We must ensure $r_{cutoff} < L/2$ so particles do not interact with multiple images of neighbors

$$\Delta x_{MI} = \Delta x - L_x \text{ int } \left(\frac{\Delta x}{L_x}\right)$$

Ensemble and time averages

Ensemble average

- Average over all possible system configurations
- Naturally attained in experiments containing $N_{\mbox{Av}}$ number of particles
- Very hard integral to perform numerically!

$$\langle A \rangle = \int \int dr^N dp^N A(r^N, p^N) \rho(r^N, p^N)$$

 $ho(r^N, p^N) = \frac{1}{Q} exp\left[-\beta H(r^N, p^N)
ight]$
 $Q = \int \int dr^N dp^N exp\left[-\beta H(r^N, p^N)
ight]$

Time average

- Average over a single simulation trajectory
- Approximate time integral by summation

$$\bar{A} = \lim_{\tau \to \infty} \int_{t=0}^{\tau} dt A\left(r^{N}(t), p^{N}(t)\right)$$
$$\approx \frac{1}{M} \sum_{m=1}^{M} A\left(r^{N}(m), p^{N}(m)\right)$$

Ergodic hypothesis

The **ergodic hypothesis** states that for $\tau \to +\infty$ $\langle A \rangle = \bar{A}$

So we can compute thermodynamic averages from sufficiently long MD trajectories

- Intuition is that long simulations explore all of the important (low energy) terms in the ensemble average
- How long is long enough is often unknown a priori and we rely on internal checks that observables reach steady state

For slow processes, we may need accelerated sampling

Accelerated sampling

Hardware limits the attainable MD time scales to $O(\mu s)$, making it hard to study processes with $>\mu s$ relaxations

Energetically, the system can be trapped behind large barriers, with the transition an exceedingly rare event

Accelerated sampling techniques use artificial biases to speed up sampling of conformational space:

umbrella sampling replica exchange Hamiltonian exchange hyperdynamics metadynamics parallel replica T accelerated

- restrain system to hi E configurations using biasing potentials
- use T swaps to accelerate system dynamics at hiT
- use H swaps to make exploration easier
- modify H with boost potential to enhance sampling
- lay down history dependent potential to flatten H
- simulate multiple system copies to accelerate escape
- hiT/hi mass coupling of part of system

Specialized MD variants

Car-Parrinello MD

- ab initio MD (no FF rqd!)
- nuclear forces from solution of the electronic problem
- prohibitively expensive and slow for big systems

ReaxFF

- reactive MD force field
- enables classical modeling of chemical reactions

GPU enabled MD

- massive speedups on commodity graphics cards

Implicit field models

- trades accuracy for time scale

Limitations and Caveats

No electrons and so no chemical reactions (but ReaxFF)

No quantum effects (but QM/MM)

Availability, transferability, and quality of force fields

Time and length scale limitations

Statistical significance of single trajectories

Equilibrated?

Common mistakes

Simulation too short (#1 problem!)

- answers are not meaningful
- out of thermodynamic equilibrium

Inadequate forcefield

- GIGO

Δt too large

- E not conserved, unstable trajectory

System too small

- finite size effects
- hard to model low conc. in small box

Missing important physics or chemistry

- e.g., salt, surface, impurity

Cut-offs too short

- improper treatment of long-range interactions

V. Molecular Dynamics Packages

MD software

GROMACS FAST. FREE.	U. Groningen <u>www.gromacs.org</u>	FREE
CHARMM	Harvard <u>www.charmm.org</u>	\$600
AMBER	Rutgers et al. <u>www.ambermd.org</u>	\$400
NAME Molecular Dynamics	UIUC <u>www.ks.uiuc.edu</u>	FREE
Desmond D E Shaw Research	D.E. Shaw Research <u>www.deshawresearch.com</u>	FREE
	Sandia National Lab <u>http://lammps.sandia.gov</u>	FREE
HOOTD -=blue	U. Michigan <u>http://codeblue.umich.edu/hoomd-</u>	FREE <u>-blue/</u>
Folding@home distributed computing	Folding@home <u>http://folding.stanford.edu</u>	FREE

VI. Applications

Fracture mechanics

Crack propagation in crystal planes of alumina

Phase transitions

Silicon crystallization

Protein folding

Data from Voelz, Bowman , Beauthamp, and Pande. "Molecular Simulation of ab inition ontein folding for a millisecond folder NTL9(1-39)," JACS Communications (2010) Data from Folding@home GPU Simulations (http://folding.stanford.edu) Pande Lab, Stanford University

Credits

VII. LAMMPS

LAMMPS

http://lammps.sandia.gov

Large-scale Atomic/Molecular Massively Parallel Simulator

LAMMPS Molecular Dynamics Simulator

lamp: a device that generates light, heat, or therapeutic radiation; something that illumines the mind or soul -- www.dictionary.com

physical analog (start at 3:25) & explanation

Big Picture	Code	Documentation	Results	Related Tools	Context	User Support	
Features	Download	Manual	Publications	Pre/Post Processing	Authors	Mail list	
Non-features	SourceForge	Developer Guide	Pictures	Pizza.py Toolkit	History	Workshops	
FAQ	Latest Features & Bug Fixes	Tutorials	Movies	Offsite LAMMPS packages & tools	Funding	User Scripts and HowTos	
Wish list	Unfixed bugs	MD to LAMMPS glossary	Benchmarks	Visualization	Open source	Contribute to LAMMPS	
		Commands	Citing LAMMPS	Related Modeling codes			

LAMMPS is a classical molecular dynamics code, and an acronym for Large-scale Atomic/Molecular Massively Parallel Simulator.

LAMMPS has potentials for solid-state materials (metals, semiconductors) and soft matter (biomolecules, polymers) and coarse-grained or mesoscopic systems. It can be used to model atoms or, more generically, as a parallel particle simulator at the atomic, meso, or continuum scale.

LAMMPS runs on single processors or in parallel using message-passing techniques and a spatial-decomposition of the simulation domain. The code is designed to be easy to modify or extend with new functionality.

LAMMPS is distributed as an open source code under the terms of the GPL. The current version can be downloaded here. Links are also included to older F90/F77 versions. Periodic releases are also available on SourceForge.

LAMMPS is distributed by <u>Sandia National Laboratories</u>, a US <u>Department of Energy</u> laboratory. The main authors of LAMMPS are listed on <u>this page</u> along with contact info and other contributors. Funding for LAMMPS development has come primarily from DOE (OASCR, OBER, ASCI, LDRD, Genomes-to-Life) and is <u>acknowledged here</u>.

The LAMMPS WWW site is hosted by Sandia, which has this Privacy and Security statement.

Born mid-90's in cooperation between Sandia, LLNL, Cray, Bristol Meyers Squibb, and Dupont — now developed at Sandia under DOE funding

Current release in C++ w/ MPI

Open source and free under GPL

Platforms: Linux, Mac, Windows

Format: exe, RPM, PPA, SVN, Git, Homebrew, tarball

Usability

Run initialization and control via **input script**

Call from command line as ./lmp_linux < in.comp

No GUI, but some python tools available (<u>http://lammps.sandia.gov/doc/</u> <u>Section_python.html</u>)

```
Al fcc.in
000
# ----- Initialize Simulation -----
units metal
dimension 3
boundary p p p
atom_style atomic
# ----- Create Atoms -----
lattice
              fcc 4
region box block 0 1 0 1 0 1 units lattice
create_box
              1 box
lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
create_atoms 1 box
replicate 2 2 2
# ------ Define Interatomic Potential ------
pair_style eam/alloy
pair_coeff * * Al99.eam.alloy Al
neighbor 2.0 bin
neigh modify delay 10 check yes
# ----- Define Settings ------
compute eng all pe/atom
compute eatoms all reduce sum c_eng
# ----- Dump Options -----
              1 all atom 1 dump.relax
dump
# ----- Run Minimization ------
reset timestep 0
fix 1 all box/relax iso 0.0 vmax 0.001
thermo 10
thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
min_style cq
minimize 1e-25 1e-25 5000 10000
variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"
print "Total energy (eV) = ${teng};"
print "Number of atoms = ${natoms};"
print "Lattice constant (Angstoms) = ${a};"
print "Cohesive energy (eV/atom) = ${ecoh};"
print "All done!"
```

Documentation

Excellent manual

(http://lammps.sandia.gov/doc/Manual.html)

Introductory Tutorials and HowTos (<u>http://lammps.sandia.gov/howto.html</u>)

Big Picture	Code	Documentation	User Support
Features	Download	Manual	Mail list
Non-features	SourceForge	Developer Guide	Workshops
FAQ	Latest Features & Bug Fixes	Tutorials	User Scripts and HowTos
<u>Wish list</u>	Unfixed bugs	MD to LAMMPS glossary	Contribute to LAMMPS
		Commands	

Friendly user base and mailing list (<u>http://lammps.sandia.gov/mail.html</u>)

 Introduction 1.1 What is LAMMPS 1.2 LAMMPS features 1.3 LAMMPS non-features 1.4 Open source distribution 1.5 Acknowledgments and citations 2. Getting started 2.1 What's in the LAMMPS distribution 2.2 Making LAMMPS 2.3 Making LAMMPS with optional packages 2.4 Building LAMMPS via the Make.py script 2.5 Building LAMMPS as a library 2.6 Running LAMMPS 2.7 Command-line options 2.8 Screen output 2.9 Tips for users of previous versions Commands 3.1 LAMMPS input script 3.2 Parsing rules 3.3 Input script structure 3.4 Commands listed by category 3.5 Commands listed alphabetically Packages

- 4.1 Standard packages
- 4.2 User packages

Excellent third-party tutorials hosted by CAVS @ MSU (https://icme.hpc.msstate.edu/mediawiki/index.php/LAMMPS_tutorials)

Visualization

LAMMPS has no built-in visualization capability

OVITO is a free, user-friendly and powerful visualization engine available for Linux, Mac and Windows

http://www.ovito.org

Running a simulation

VIII. Hands-on with LAMMPS

Adapted from materials developed by Mark A.Tschopp (US ARL) and hosted at <u>https://icme.hpc.msstate.edu</u>

We will use LAMMPS to estimate the AI fcc cohesive energy, **E**_{cohe}, and lattice parameter, **a**

Experimentally, $\mathbf{E_{cohe}} = -3.39 \text{ eV/atom}^*$ and $\mathbf{a} = 4.0495 \text{ Å}^*$

Strategy: We shall use a modern EAM potential for AI and optimize E_{cohe} as a function of **a**

 Download Al99.eam.alloy EAM potential from NIST Interatomic Potentials Repository Project (<u>http://www.ctcms.nist.gov/potentials</u>)

Elements																		
	1																	18
1	1 H	2											13	14	15	16	17	2 He
2	3 <u>Li</u>	4 Be											5 B	6 <u>C</u>	7 N	8 <u>0</u>	9 F	10 Ne
3	11 <u>Na</u>	12 Mg	3	4	5	6	7	8	9	10	11	12	13 <u>Al</u>	14 <u>Si</u>	15 P	16 <u>\$</u>	17 Cl	18 Ar
4	19 <u>K</u>	20 Ca	21 Sc	22 Ti	23 ⊻	24 <u>Cr</u>	25 Mn	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 Ga	32 Ge	33 As	34 <u>Se</u>	35 Br	36 Kr
5	37 <u>Rb</u>	38 Sr	39 Y	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 Tc	44 <u>Ru</u>	45 Rh	46 <u>Pd</u>	47 <u>Ag</u>	48 <u>Cd</u>	49 In	50 Sn	51 Sb	52 <u>Te</u>	53 I	54 Xe
6	55 <u>Cs</u>	56 Ba	*	72 Hf	73 <u>Ta</u>	74 <u>W</u>	75 Re	76 Os	77 Ir	78 <u>Pt</u>	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		**	89 Ac	90 Th	91 Pa	92 <u>U</u>	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

2. Obtain LAMMPS input file Al_fcc.in from http://ferguson.matse.illinois.edu/download/Al.zip

000

Al fcc.in

- # ------ Initialize Simulation -----units metal dimension 3 boundary p p p atom_style atomic
- # ----- Create Atoms ---- lattice fcc 4 region box block 0 1 0 1 0 1 units lattice create_box 1 box
- lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 create_atoms 1 box replicate 2 2 2
- # ----- Define Interatomic Potential ----- Define Interatomic Potential -----pair_style eam/alloy
 pair_coeff * * Al99.eam.alloy Al
 neighbor 2.0 bin
 neigh_modify delay 10 check yes
- # ----- Dump Options ----- Dump Options -----dump 1 all atom 1 dump.relax
- # ------ Run Minimization -----reset_timestep 0
 fix 1 all box/relax iso 0.0 vmax 0.001
 thermo 10
 thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
 min_style cg
 minimize 1e-25 1e-25 5000 10000

```
variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"
```

```
print "Total energy (eV) = ${teng};"
print "Number of atoms = ${natoms};"
print "Lattice constant (Angstoms) = ${a};"
print "Cohesive energy (eV/atom) = ${ecoh};"
```

```
print "All done!"
```

For style *metal*, these are the units:

- mass = grams/mole
- distance = Angstroms
- time = picoseconds
- energy = eV
- velocity = Angstroms/picosecond
- force = eV/Angstrom
- torque = eV
- temperature = Kelvin
- pressure = bars
- dynamic viscosity = Poise
- charge = multiple of electron charge (1.0 is a proton)
- dipole = charge*Angstroms
- electric field = volts/Angstrom
- density = gram/cm^dim
- # specifies a comment
- x,y,z periodic boundaries

000

Al_fcc.in

------ Initialize Simulation -----units metal dimension 3 boundary p p atom_style atomic

lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
create_atoms 1 box
replicate 2 2 2

------ Define Interatomic Potential ----- pair_style eam/alloy pair_coeff * * Al99.eam.alloy Al neighbor 2.0 bin neigh_modify delay 10 check yes

----- Dump Options ----- dump 1 all atom 1 dump.relax

------ Run Minimization -----reset_timestep 0
fix 1 all box/relax iso 0.0 vmax 0.001
thermo 10
thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
min_style cg
minimize 1e-25 1e-25 5000 10000

variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"

print "Total energy (eV) = \${teng};"
print "Number of atoms = \${natoms};"
print "Lattice constant (Angstoms) = \${a};"
print "Cohesive energy (eV/atom) = \${ecoh};"

print "All done!"

• Specify fcc lattice with a=4 Å

- Define cuboidal block
 labeled box holding one
 lattice cell
- Create **box** with **I** atom type

000

Al_fcc.in

------ Initialize Simulation -----units metal dimension 3 boundary p p p atom_style atomic

----- Create Atoms ---- lattice fcc 4 region box block 0 1 0 1 0 1 units lattice create_box 1 box

lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 create_atoms 1 box replicate 2 2 2

----- Dump Options ---- dump 1 all atom 1 dump.relax

----- Run Minimization ----reset_timestep 0
fix 1 all box/relax iso 0.0 vmax 0.001
thermo 10
thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
min_style cg
minimize 1e-25 1e-25 5000 10000

variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"

print "Total energy (eV) = \${teng};"
print "Number of atoms = \${natoms};"
print "Lattice constant (Angstoms) = \${a};"
print "Cohesive energy (eV/atom) = \${ecoh};"

print "All done!"

Specify fcc lattice orientation

• Create atoms of type I on lattice sites within **box**

 Replicate domain by 2x2x2 in x,y,z
 [replicate 1 1 1 would be more parsimonious for this trivially periodic system]

000

Al_fcc.in

- # ------ Initialize Simulation -----units metal dimension 3 boundary p p atom_style atomic
- # ----- Create Atoms ---- lattice fcc 4 region box block 0 1 0 1 0 1 units lattice create_box 1 box
- lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 create_atoms 1 box replicate 2 2 2
- # ------ Define Interatomic Potential --pair_style eam/alloy
 pair_coeff * * Al99.eam.alloy Al
 neighbor 2.0 bin
 neigh_modify delay 10 check yes
- # ----- Dump Options ----- Dump Options -----dump 1 all atom 1 dump.relax
- # ------ Run Minimization ----reset_timestep 0
 fix 1 all box/relax iso 0.0 vmax 0.001
 thermo 10
 thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
 min_style cg
 minimize 1e-25 1e-25 5000 10000

```
variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"
```

```
print "Total energy (eV) = ${teng};"
print "Number of atoms = ${natoms};"
print "Lattice constant (Angstoms) = ${a};"
print "Cohesive energy (eV/atom) = ${ecoh};"
```

```
print "All done!"
```

- Define form of pairwise interaction potential as eam/ alloy [misnomer, EAM is n-body]
- Use AI block of
 AI99.eam.alloy specifies
 cutoff, F, ρ, and Φ for all pairs
 [for one atom type, 1 1 fine]
- 2 Å skin thickness for neighbor list binning
- Build neighbor list every 10
 steps, but check atom moved more than half skin thickness

000

Al_fcc.in

- # ------ Initialize Simulation ----units metal dimension 3 boundary p p atom_style atomic
- # ----- Create Atoms ---- lattice fcc 4 region box block 0 1 0 1 0 1 units lattice create_box 1 box
- lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
 create_atoms 1 box
 replicate 2 2 2
- # ------ Define Interatomic Potential ----- pair_style eam/alloy pair_coeff * * Al99.eam.alloy Al neighbor 2.0 bin neigh_modify delay 10 check yes
- # ------ Define Settings -----compute eng all pe/atom compute eatoms all reduce sum c_eng
- # ----- Dump Options ----- Dump Options -----dump 1 all atom 1 dump.relax
- # ------ Run Minimization -----reset_timestep 0
 fix 1 all box/relax iso 0.0 vmax 0.001
 thermo 10
 thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
 min_style cg
 minimize 1e-25 1e-25 5000 10000
- variable natoms equal "count(all)"
 variable teng equal "c_eatoms"
 variable a equal "lx/2"
 variable ecoh equal "v_teng/v_natoms"
- print "Total energy (eV) = \${teng};"
 print "Number of atoms = \${natoms};"
 print "Lattice constant (Angstoms) = \${a};"
 print "Cohesive energy (eV/atom) = \${ecoh};"

print "All done!"

- Define computes quantities recalculated every time step
 [cf. variables, which evaluate a formula when called]
- Reference computes as
 c_<name>
- c_eng defined over all atoms to compute potential energy per atom
- c_eatoms performs sum reduce of c_eng vector over all atoms
 [alternatively: compute
 eatoms all pe]

000

Al_fcc.in

- # ----- Initialize Simulation ----units metal dimension 3 boundary p p atom_style atomic
- lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
 create_atoms 1 box
 replicate 2 2 2
- # ----- Define Settings ---- compute eng all pe/atom compute eatoms all reduce sum c_eng
- # ----- Dump Options ----dump 1 all atom 1 dump.relax
- # ------ Run Minimization -----reset_timestep 0
 fix 1 all box/relax iso 0.0 vmax 0.001
 thermo 10
 thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
 min_style cg
 minimize 1e-25 1e-25 5000 10000
- variable natoms equal "count(all)"
 variable teng equal "c_eatoms"
 variable a equal "lx/2"
 variable ecoh equal "v_teng/v_natoms"
- print "Total energy (eV) = \${teng};"
 print "Number of atoms = \${natoms};"
 print "Lattice constant (Angstoms) = \${a};"
 print "Cohesive energy (eV/atom) = \${ecoh};"
- print "All done!"

- A **dump** specifies how to write output data
- Tag dump with id I to write to dump.relax every I steps the coords of all of the atoms
- Dump format:
- ITEM: TIMESTEP 0 ITEM: NUMBER OF ATOMS 32 ITEM: BOX BOUNDS pp pp pp 0 8 0 8 0 8 ITEM: ATOMS id type xs ys zs 1 1 0 0 0 2 1 0.25 0.25 0 3 1 0.25 0 0.25 4 1 0 0.25 0.25

. . .

000

Al_fcc.in

- # ------ Initialize Simulation ------units metal
 dimension 3
 boundary p p
 atom_style atomic
- lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
 create_atoms 1 box
 replicate 2 2 2
- # ------ Define Interatomic Potential ----- pair_style eam/alloy pair_coeff * * Al99.eam.alloy Al neighbor 2.0 bin neigh_modify delay 10 check yes
- # ----- Dump Options ----- dump 1 all atom 1 dump.relax
- thermo 10 thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms min_style cg minimize 1e-25 1e-25 5000 10000

```
variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"
```

```
print "Total energy (eV) = ${teng};"
print "Number of atoms = ${natoms};"
print "Lattice constant (Angstoms) = ${a};"
print "Cohesive energy (eV/atom) = ${ecoh};"
```

```
print "All done!"
```

- Reset time steps to **0**
- A **fix** is an operation applied at every time step
- Define fix I operating on all atoms relaxes box to an external isotropic pressure of 0.0 bar with a 0.1% maximum fractional volume change per step

000

Al fcc.in

- lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
 create_atoms 1 box
 replicate 2 2 2
- # ----- Define Interatomic Potential ----- Define Interatomic Potential -----pair_style eam/alloy
 pair_coeff * * Al99.eam.alloy Al
 neighbor 2.0 bin
 neigh_modify delay 10 check yes
- # ----- Dump Options ----- dump 1 all atom 1 dump.relax
- thermo 10 thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms min_style cg minimize 1e-25 1e-25 5000 10000

```
variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"
```

```
print "Total energy (eV) = ${teng};"
print "Number of atoms = ${natoms};"
print "Lattice constant (Angstoms) = ${a};"
print "Cohesive energy (eV/atom) = ${ecoh};"
```

```
print "All done!"
```

- Output thermodynamic info to screen every 10 steps
 [use fix / dump for file write]
- Customize thermo output
- Perform energy minimization by conjugate gradient
- Minimize $E = E_{FF} + E_{fix}$ with $\Delta E = 10^{-25}$ (i.e., 1 part in 10^{25}) and $\Delta f = 10^{-25}$, and a maximum of 5000 iterations and 10000 energy evaluations

000

Al_fcc.in

------ Initialize Simulation -----units metal dimension 3 boundary p p atom_style atomic

lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 create_atoms 1 box replicate 2 2 2

----- Define Interatomic Potential ----- Define Interatomic Potential ------ pair_style eam/alloy
pair_coeff * * Al99.eam.alloy Al
neighbor 2.0 bin
neigh_modify delay 10 check yes

----- Dump Options ----- dump 1 all atom 1 dump.relax

----- Run Minimization ----reset_timestep 0
fix 1 all box/relax iso 0.0 vmax 0.001
thermo 10
thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms
min_style cg
minimize 1e-25 1e-25 5000 10000

```
variable natoms equal "count(all)"
variable teng equal "c_eatoms"
variable a equal "lx/2"
variable ecoh equal "v_teng/v_natoms"
```

```
print "Total energy (eV) = ${teng};"
print "Number of atoms = ${natoms};"
print "Lattice constant (Angstoms) = ${a};"
print "Cohesive energy (eV/atom) = ${ecoh};"
```

```
print "All done!"
```

- Define variables as formulas evaluated when called
 [cf. computes, simulation values recomputed each step]
- Reference variables as
 v_<name>
- natoms = # atoms teng = total PE (c_eatoms) a = lattice parameter (box side in x divided by # x replicas = 2)
 ecoh = cohesive energy /atom
Al fcc.in # ------ Initialize Simulation -----units metal dimension 3 boundary p p p atom_style atomic # ----- Create Atoms ----fcc 4 lattice region box block 0 1 0 1 0 1 units lattice create_box 1 box lattice fcc 4 orient x 1 0 0 orient y 0 1 0 orient z 0 0 1 create_atoms 1 box replicate 2 2 2 # ----- Define Interatomic Potential ----pair_style eam/alloy pair_coeff * * Al99.eam.alloy Al neighbor 2.0 bin neigh_modify delay 10 check yes # ----- Define Settings -----compute eng all pe/atom compute eatoms all reduce sum c_eng # ----- Dump Options ----dump 1 all atom 1 dump.relax # ------ Run Minimization ------reset_timestep 0 fix 1 all box/relax iso 0.0 vmax 0.001 thermo 10 thermo_style custom step pe lx ly lz press pxx pyy pzz c_eatoms min_style cq minimize 1e-25 1e-25 5000 10000 variable natoms equal "count(all)" variable teng equal "c_eatoms" variable a equal "lx/2" variable ecoh equal "v_teng/v_natoms"

```
print "Total energy (eV) = ${teng};"
print "Number of atoms = ${natoms};"
print "Lattice constant (Angstoms) = ${a};"
print "Cohesive energy (eV/atom) = ${ecoh};"
```

print "All done!"

000

 Print terminal output to screen

Tutorial I: Al cohesive energy ./lmp_mac < Al_fcc.in 3. Let's run! tuckernuck:1_Al_cohesive_energy alf\$./lmp_mac < Al_fcc.in</pre> LAMMPS (1 Feb 2014) Lattice spacing in x,y,z = 4 4 4 Created orthogonal box = $(0 \ 0 \ 0)$ to $(4 \ 4 \ 4)$ 1 by 1 by 1 MPI processor grid building system Lattice spacing in x,y,z = 4 4 4 Created 4 atoms Replicating atoms orthogonal box = (0 0 0) to (8 8 8) serial run 1 by 1 by 1 MPI processor grid 32 atoms WARNING: Resetting reneighboring criteria during minimization (../min.cpp:173) Setting up minimization ... Memory usage per processor = 3.39898 Mbytes Step PotEng Lx Ly Lz Press Pxx Pyy Pzz eatoms -107.3423 8 29590.11 29590.11 29590.11 29590.11 -107.34238 8 thermo 10 -107.51283 8.08 8.08 5853,9553 5853,9553 -107.512838.08 5853.9553 5853.9553 14 -107.528.1 8.1 8.1 2.726913 2,726913 2,726913 2.726913 -107.52Loop time of 0.00931406 on 1 procs for 14 steps with 32 atoms Minimization stats: Stopping criterion = linesearch alpha is zero minimization stopping Energy initial, next-to-last, final = -107.342298373 -107.51999962 -107.51999962 Force two-norm initial, final = 28.3679 0.00268005 criteria Force max component initial, final = 28.3679 0.00268005 Final line search alpha, max atom move = 0.00145753 3.90625e-06 Iterations, force evaluations = 14 23 Pair time (%) = 0.00601649 (64.5958) CPU accounting Neigh time (%) = 0 (0) time (%) = 0.00095582 (10.2621) Outpt time (%) = 0.000850677 (9.13326) Other time (%) = 0.00149107 (16.0088) Nlocal: 32 ave 32 max 32 min Histogram: 1000000000 atom accounting Nghost: 1067 ave 1067 max 1067 min Histogram: 10000000000 Neighs: 2240 ave 2240 max 2240 min neighbor accounting Histogram: 10000000000 Total # of neighbors = 2240 (dangerous builds) Ave neighs/atom = 70 Neighbor list builds = 0 Dangerous builds = 0 Total energy (eV) = -107.51999962032; Number of atoms = 32; terminal print Lattice constant (Angstoms) = 4.05; Cohesive energy (eV/atom) = -3.359999988135;

All done!

4. Analysis

	LAMMPS	Expt.
Lattice constant / Å	4.05	4.0495
Cohesive energy / eV/atom	-3.36	-3.39

We should be shocked if these quantities did **not** agree – EAM FF parametrized wrt experimental data

Q. What about if we were studying a new material with experimentally unknown **E**_{cohe} and **a**?

A. ICME!

https://icme.hpc.msstate.edu/mediawiki/index.php?title=File:Titanium_armor_length_scale_Bridging_plot.png&limit=20

5. Visualization in OVITO

OK, but weren't we meant to do MD?

Right! Now that we can generate an equilibrated Al fcc lattice, let's use LAMMPS to estimate Young's modulus, **E**

Strategy: Apply an artificial extensional force to a fcc Al xtal and measure stress/strain relationship

 Download Al99.eam.alloy EAM potential from NIST Interatomic Potentials Repository Project (<u>http://www.ctcms.nist.gov/potentials</u>)

Elements																		
	1																	18
1	1 H	2											13	14	15	16	17	2 He
2	3 <u>Li</u>	4 Be											5 B	6 <u>C</u>	7 N	8 <u>0</u>	9 F	10 Ne
3	11 <u>Na</u>	12 Mg	3	4	5	6	7	8	9	10	11	12	13 <u>Al</u>	14 <u>Si</u>	15 P	16 <u>\$</u>	17 Cl	18 Ar
4	19 <u>K</u>	20 Ca	21 Sc	22 Ti	23 ⊻	24 <u>Cr</u>	25 Mn	26 <u>Fe</u>	27 <u>Co</u>	28 <u>Ni</u>	29 <u>Cu</u>	30 <u>Zn</u>	31 Ga	32 Ge	33 As	34 <u>Se</u>	35 Br	36 Kr
5	37 <u>Rb</u>	38 Sr	39 Y	40 <u>Zr</u>	41 <u>Nb</u>	42 <u>Mo</u>	43 Tc	44 <u>Ru</u>	45 Rh	46 <u>Pd</u>	47 <u>Ag</u>	48 <u>Cd</u>	49 In	50 Sn	51 Sb	52 <u>Te</u>	53 I	54 Xe
6	55 <u>Cs</u>	56 Ba	*	72 Hf	73 <u>Ta</u>	74 W	75 Re	76 Os	77 Ir	78 <u>Pt</u>	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
7	87 Fr	88 Ra	**	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt	110 Ds	111 Rg	112 Cn	113 Uut	114 Fl	115 Uup	116 Lv	117 Uus	118 Uuo
		*	57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		**	89 Ac	90 Th	91 Pa	92 <u>U</u>	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

2. Obtain LAMMPS input files **Al_tensile.in**, **Al_eq.m**, and **Al_deform.m** from

http://ferguson.matse.illinois.edu/download/Al.zip

000	Al tensile.in
#	INITIALIZATION
units dimension	metal 3
boundary	p p p
atom_style	atomic
variable latpar	am equal 4.05
#	ATOM DEFINITION
lattice	fcc \${latparam}
region create_box	whole block 0 10 0 10 0 10 1 whole
lattice	fcc \${latparam} orient x 1 0 0 orient y 0 1 0 orient z 0 0 1
create_atoms replicate	1 region whole 1 1 1
#	FORCE FIELDS
pair_style pair_coeff	eam/alloy * * Al99.eam.alloy Al
neighbor neigh_modify	2.0 bin delay 0 every 10 check yes
#	SETTINGS
compute compute	csym all centro/atom fcc eng all pe/atom

- Set lattice parameter variable to $\mathbf{a} = \mathbf{a}_{eq} = 4.05 \text{ Å}$
- Specify two computes to calculate pelatom and centrosymmetry parameter

$$CS = \sum_{i=1}^{N/2} |\vec{R}_i + \vec{R}_{i+N/2}|^2$$

Bulk lattice = 0 Dislocation core ~ 1.0 Stacking faults ~ 5.0 Free surface ~ 23.0

************************************* # EQUILIBRATION # reset timer reset_timestep 0 # 2 fs time step timestep 0.002 # initial velocities all create 300 12345 mom yes rot no velocity # thermostat + barostat 1 all npt temp 300 300 1 iso 0 0 1 drag 1.0 fix # instrumentation and output variable s1 equal "time" variable s2 equal "lx" variable s3 equal "ly" variable s4 equal "lz" variable s5 equal "vol" variable s6 equal "press" variable s7 equal "pe" variable s8 equal "ke" variable s9 equal "etotal" variable s10 equal "temp" fix writer all print 250 "\${s1} \${s2} \${s3} \${s4} \${s5} \${s6} \${s7} \${s8} \${s9} \${s10}" file Al_eq.txt screen no # thermo thermo 500 thermo_style custom step time cpu cpuremain lx ly lz press pe temp # dumping trajectory 1 all atom 250 dump.eq.lammpstrj dump # 24 ps MD simulation (assuming 2 fs time step) run 12000 # clearing fixes and dumps unfix 1 1 undump # saving equilibrium length for strain calculation variable tmp equal "lx" variable L0 equal \${tmp} print "Initial Length, LO: \${LO}"

 Instrumentation, perform MD integration with Verlet (default) algorithm, and record terminal relaxed box size

DEFORMATION

reset timer
reset_timestep 0

2 fs time step
timestep 0.002

thermostat + barostat
fix 1 all npt temp 300 300 1 y 0 0 1 z 0 0 1 drag 1.0

nonequilibrium straining in x-direction at strain rate = 1x10^10 / s = 1x10^-2 / ps in units metal
variable srate equal 1.0e10
variable srate1 equal "v_srate / 1.0e12"
fix 2 all deform 1 x erate \${srate1} units box remap x

instrumentation and output
for units metal, pressure is in [bars] = 100 [kPa] = 1/10000 [GPa] => p2, p3, p4 are in GPa
variable strain equal "(lx - v_L0)/v_L0"
variable p1 equal "v_strain"
variable p2 equal "-pxx/10000"
variable p3 equal "-pyy/10000"
variable p4 equal "-pzz/10000"
fix writer all print 125 "\${p1} \${p2} \${p3} \${p4}" file Al_deform.txt screen no

thermo
thermo 500
thermo_style custom step cpuremain v_strain v_p2 v_p3 v_p4 press pe temp

dumping standard atom trajectories
dump 1 all atom 125 dump.deform.lammpstrj

dumping custom cfg files containing coords + ancillary variables
dump 2 all cfg 125 dump.deform_*.cfg mass type xs ys zs c_csym c_eng fx fy fz
dump_modify 2 element Al

20 ps MD simulation (assuming 2 fs time step)
run 10000

clearing fixes and dumps
unfix 1
unfix 2
unfix writer

undump 1 undump 2

 Nonequilibrium straining, instrumentation, and cfg trajectory dump

3. Let's run! ./lmp_mac < Al_tensile.in

000

2_Al_Youngs_modulus — bash — 133×27

tuckernuck:2_Al_Youngs_modulus alf\$./lmp_mac < Al_tensile.in												
$attice spacing in x_{X_{z}} = 4.05 4.05 4.05$												
Created orthogonal box = $(0, 0, 0)$ to $(40.5, 40.5, 40.5)$												
	1 by 1 by 1 MPI processor grid											
Lattice spacing in $x_1 y_2 = 4.05$ 4.05 4.05												
Created 4000 atoms												
Created 4000 atoms												
Replicating atoms \dots												
ortnogonal b	orthogonal box = (0 0 0) to (40.5 40.5 40.5)											
1 by 1 by 1	1 by 1 MPI processor grid											
4000 atoms	4000 atoms											
Setting up run												
Memory usage p	er proces	sor = 4.96236	Mbytes									
Step Time CPU	CPULeft L	x Ly Lz Press	PotEng Temp									
0	0	0	0	40.5	40.5	40.5	2496.1233	-13440	300			
500	1	12.365961	284.41713	40.557806	40.557806	40.557806	781.69582	-13362.995	169.08671			
1000	2	24.741789	272.15969	40.573622	40.573622	40.573622	85.733564	-13355.919	178.0143			
1500	3	39.549843	276.84891	40.58055	40.58055	40.58055	222.05046	-13346.458	182.72414			
2000	4	54.536895	272.68448	40.588269	40.588269	40.588269	28.687955	-13340.533	194.24556			
2500	5	70.367178	267.39528	40.591944	40.591944	40.591944	191.32817	-13335.453	207.18274			
3000	6	83.555789	250.66737	40.595807	40.595807	40.595807	324.09009	-13329.002	216.94285			
3500	7	96.427479	234.18102	40.603551	40.603551	40.603551	330.98508	-13320.563	222.10308			
4000	8	110.11764	220.23529	40.611179	40.611179	40.611179	106.05206	-13316.256	234.27863			
4500	9	122.99169	204.98615	40.61865	40.61865	40.61865	21.917251	-13313.98	249.16077			
5000	10	135.84727	190.18618	40.625915	40.625915	40.625915	14.611906	-13307.48	254.46631			
5500	11	148.63189	175.65587	40.629588	40.629588	40.629588	30.56594	-13302.925	261.97643			
6000	12	161.44717	161.44717	40.631803	40.631803	40.631803	2.7573596	-13301.413	273.69236			

N.B. This could take 8-10 minutes if your machine is old and slow (like mine) Speed things up by reducing system size by factor of 2³ in Al_tensile.in: region whole block 0 5 0 5 0 5

1271

4. Analyze approach to equilibration using Al_eq.m

O O O MATLAB R2014a	2
HOME PLOTS APPS	🛛 🖸 🕐 Qimportdata 🛛 🕲 🗖
New New Open Open Open Save Open <td></td>	
< Imes in the second s	م -
Current Folder 🕤 Command Window	Workspace 💿
Name ▲ fx >> Al_eq Al99.eam.alloy Al_deform.fig Al_deform.m Al_deform.tif	Name ▲ Value Min
Details v	
Select a file to view details	

• Equilibrium attained in ~24 ps

5. Analyze deformation and estimate **E** using **Al_deform.m**

000				MA	TLAB R2	2014a						12 ⁷¹
HOME PLOTS	APPS									≥ 5 0	Qimportdata	◎ ≖
New New Open D Compare	Import Save Data Workspace	New Variable Open Variable Clear Workspace	Analyze Code	Simulink Library	Layout	 Preferences Set Path Parallel 	? Help	Community Request Support Add-Ons RESOURCES				
💠 🔶 🛅 河 🦢 / 🕨 Users	▶ alf ▶ Desktop	▶ 140723_ICME ▶ Tute	orials > 2_Al_Youngs_n	nodulus								- P
Current Folder		Command Window							۲	Workspa	ce	۲
Al99.eam.alloy	0	<i>f</i> ұ⇒> Al_deform								Name 4	Value	Min
Details	~ ,									-		
Select a file to view d	etails											_
*												

- Onset of homogeneous dislocation nucleation and end of elastic deformation at ~8 GPa
- E estimated by slope of linear fit over strain range [0-0.05]

6. Visualization of deformation in OVITO

7. Comparison to experiment

	LAMMPS	Expt.	Δ/%
Young's Modulus / GPa	62	69 *	10.1
Yield Stress / MPa	8000	10 *	79900

Young's Modulus

- We did pretty well, **E** within $\pm 10\%$
- A rigorous study would check **E** convergence as a function of **system size**

Yield Stress

- Our estimate for yield stress is horrible! Off by ~3 orders of magnitude!
- Why did we do so badly? We have a perfect crystal, homogeneous vs. heterogeneous nucleation.

ICME — for an experimentally uncharacterized material can "bridge up" MD **E** estimate to FEA model

https://icme.hpc.msstate.edu/mediawiki/index.php?title=File:Titanium_armor_length_scale_Bridging_plot.png&limit=20

Questions?